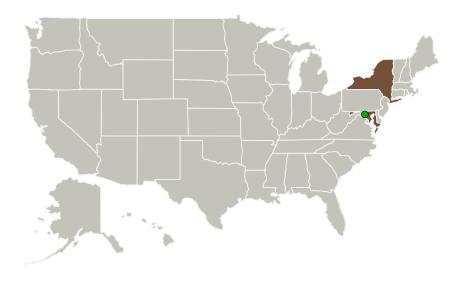
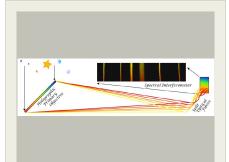
### Holographic Optical Method for Exoplanet Spectroscopy (HOMES)



Completed Technology Project (2012 - 2013)


#### **Project Introduction**


HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element as a primary objective in conjunction with a novel secondary spectral interferometer. Unlike mirrors and lenses, the holograms are thin and flat, can be fabricated on thin gossamer membranes and stretched over space frames covering thousands of square meters. HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope designed for exoplanet discovery. Its double dispersion architecture employs a holographic optical element as a primary objective in conjunction with a novel secondary spectral interferometer. Unlike mirrors and lenses, the holograms are thin and flat. They can be fabricated on thin gossamer membranes and stretched over space frames covering thousands of square meters. This provides the scale of collector needed to capture the photons from very faint sources like exoplanets and bring them to a focus. Because holographic optics focus by the process of dispersion, they are intrinsically spectrographic providing a wealth of detail about the composition of the images they form. Add to this a novel notch filter to dim the star that takes advantage of the spectrographic image, and HOMES is a concept that addresses the demanding specifications of a telescope to find habitable planets within 30 light years of earth.

#### **Anticipated Benefits**

This technology could enable new discoveries about exoplanets on stars within 10 pc of the observatory.

#### **Primary U.S. Work Locations and Key Partners**





Project Image HOMES -Holographic Optical Method for Exoplanet Spectroscopy

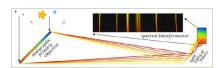
#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Anticipated Benefits          | 1 |
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Images                        | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### **NASA Innovative Advanced Concepts**

## Holographic Optical Method for Exoplanet Spectroscopy (HOMES)




Completed Technology Project (2012 - 2013)

| Organizations<br>Performing Work  | Role                       | Туре           | Location               |
|-----------------------------------|----------------------------|----------------|------------------------|
| 3DeWitt LLC                       | Lead<br>Organization       | Industry       |                        |
| Goddard Space Flight Center(GSFC) | Supporting<br>Organization | NASA<br>Center | Greenbelt,<br>Maryland |

| Primary U.S. Work Locations |          |
|-----------------------------|----------|
| Maryland                    | New York |

#### **Images**



#### 11550-1366133801549.jpg

Project Image HOMES -Holographic Optical Method for Exoplanet Spectroscopy (https://techport.nasa.gov/imag e/102097)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

3DeWitt LLC

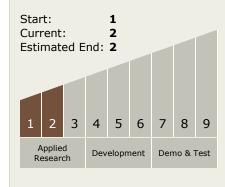
#### **Responsible Program:**

NASA Innovative Advanced Concepts

## **Project Management**

#### **Program Director:**

Jason E Derleth


#### **Program Manager:**

Eric A Eberly

#### **Principal Investigator:**

Thomas Ditto

# Technology Maturity (TRL)





# Holographic Optical Method for Exoplanet Spectroscopy (HOMES)



Completed Technology Project (2012 - 2013)

## **Technology Areas**

#### **Primary:**

- TX08 Sensors and Instruments
   TX08.2 Observatories
   TX08.2.1 Mirror Systems
- Target Destinations
  Earth, Foundational Knowledge

Tech®Port
Printed on 12/07/2022
10:49 PM UTC